Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.21.473733

ABSTRACT

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identified two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generated a bispecific antibody. Lead antibodies showed strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solved several cryo-EM structures at ~3 Angstrom resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and revealed distinct epitopes, binding patterns, and conformations. The lead clones also showed potent efficacy in vivo against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generated and characterized a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.


Subject(s)
Oculocerebrorenal Syndrome , Breakthrough Pain , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.02.471028

ABSTRACT

Lipid-nanoparticle(LNP)-mRNA vaccines offer protection against COVID-19. However, multiple variant lineages caused widespread breakthrough infections. There is no report on variant-specific vaccines to date. Here, we generated LNP-mRNAs specifically encoding wildtype, B.1.351 and B.1.617 SARS-CoV-2 spikes, and systematically studied their immune responses in animal models. All three LNP-mRNAs induced potent antibody responses in mice. However, WT-LNP-mRNA vaccination showed reduced neutralization against B.1.351 and B.1.617; and B.1.617-specific vaccination showed differential neutralization. All three vaccine candidates elicited antigen-specific CD8 and CD4 T cell responses. Single cell transcriptomics of B.1.351-LNP-mRNA and B.1.617-LNP-mRNA vaccinated animals revealed a systematic landscape of immune cell populations and global gene expression. Variant-specific vaccination induced a systemic increase in reactive CD8 T cell population, with a strong signature of transcriptional and translational machineries in lymphocytes. BCR-seq and TCR-seq unveiled repertoire diversity and clonal expansions in vaccinated animals. These data provide direct systems immune profiling of variant-specific LNP-mRNA vaccination in vivo.


Subject(s)
Breakthrough Pain , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL